

Full-field modeling of spheroidization phenomenon in α/β titanium alloys during hot-deformation and subsequent annealing at a given temperature.

Authors: Polychronopoulou Danai, Bozzolo Nathalie, Bernacki Marc

AUBERT&DUVAL

What is spheroidization in α/β titanium alloys ?

Why?

- α/β titanium alloys show attractive mechanical properties for industrial use.
- Spheroidization is a very important phenomenon for the microstructural control
- Speroidized microstructure shows enhanced strength and ductility

Which are the main governing mechanisms?

Microstructural evolution

+ 15min annealing

Conclusions

The higher the strain the quicker is the evolution during annealing

+ 1h annealing

Quantification of microstructural evolution

0.36 strain

350 laths measured

Deformed

Deformed +15 min annealed

<u>1.34 strain</u> 450 laths measured

Deformed +15 min annealed

We want to measure

- Aspect ratio
- Particle area

 $Aspect\ ratio = \frac{major\ radius}{minor\ radius}$

Quantification of microstructural evolution

MINES ParisTech

Overview of the physical mechanisms

KAM map of lamellar microstructure after deformation and annealing

Governing Mechanisms

- Crystal
 plasticity
- Surface diffusion in α/β interfaces
- Motion by mean curvature in α/α interfaces
 - Coarsening

Splitting of lamellae

FE/ Level-Set Method

Simulating Grooving

Distance function $\varphi(x,t) = \pm d(x,\Gamma(t))$

Outside normalMean curvature $\vec{n} = -\frac{\nabla \varphi}{\|\nabla \varphi\|}$ $\kappa = -\nabla \frac{\nabla \varphi}{\|\nabla \varphi\|}$

FE/ Level-Set Method

*D. Pino Muñoz, J. Bruchon, F. Valdivieso, S. Drapier, Solid-state sintering simulation: surface, volume and grain boundary diffusions, Conference: ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, 2012

**M. Shakoor, B. Scholtes, P.-O. Bouchard, and M. Bernacki. An efficient and parallel level set reinitialization method - application to micromechanics and microstructural evolutions. Applied Mathematical Modelling, 2015.

Immersion of microstructure

Extraction of real α colonies from experimental images and application of surface diffusion

Experimental picture of LNx4 deformed

- Binarization and image treatment with "Image J"
- Extract of the distance function with "Image J"

Enhanced Lagrangian framework

New topological mesher (Fitz)

Body fitted meshing and remeshing is possible with this technic

- Efficient representation of the α laths
 - Following the shape evolution of the interfaces
 - More efficient regarding volume loss

Mesh quality Extraction of real α colonies from experimental images and application of surface diffusion

M. Shakoor, P.-O. Bouchard, and M. Bernacki. An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains. International Journal for Numerical Methods in Engineering, 2016.

Motion by surface diffusion

MINES ParisTech

Zero iso-surface evolution

Mesh adaptation technique	Method 2
Time step (ms)	10
Time (s)	1
h _{el} close to surface (μm)	1
time calculation (12CPUs)	2min
Volume loss	1.5%

Motion by mean curvature

 $\overrightarrow{v_{curv}} = (\mathbf{A}\kappa)\overrightarrow{\mathbf{n}}$

simple case of triple junction in a Lagragian Framework Calculation time: 8 min MINES ParisTech

CINIS

Cemef

Coupling of surface diffusion and motion by mean curvature

Cemef

Surface diffusion in real microstructure

Motion by surface diffusion coupled with motion by mean curvature

Comparison

Surface diffusion

Surface diffusion + motion by mean curvature

Volume loss approximation: 2.8%

No unphysical coalescence Volume loss approximation: 0,1%

Conclusions

1. Governing mechanisms for the first stages of annealing

3. Simulated the coupling of the mechanisms on real microstructure

2. Efficiently simulated the splitting of the lamellae

$$\overrightarrow{v_n} = (-(C_o \Delta_{\rm s}\kappa) + \mathbf{A}\kappa)\overrightarrow{\mathbf{n}}$$

Perspectives

- Estimation of the right values for coefficients Co and A $\vec{v_n} = (-(C_o \Delta_s \kappa) + A\kappa)\vec{n}$
- Simulating coarsening
- Simulating crystal plasticity during deformation for the formation of sub-boundaries

Thank you for your attention!

